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Abstract—A boundary integral formulation is presented for the solution of the inverse elastostatics
problem (IESP) of reconstructing missing boundary tractions in two-dimensional structural
members. Traction reconstruction may involve the determination of the location of the traction
distribution in addition to its extent and amplitude. The missing boundary tractions are rebuilt
from measured quantities such as displacements, strains or stresses. These quantities may be obtained
from sensors located at some internal or boundary points of the object. The proposed formulation
starts with an initial guess for the magnitude, extent and location of the missing boundary tractions
and proceeds towards the final traction distribution in a sequence of iterative steps. The inverse
problem is written as an optimization problem with the objective function being the sum of
the squares of the differences between the measured quantities at each sensor location and the
corresponding computed quantities for the assumed boundary traction distribution. The constraints
that the missing traction distribution lies within a certain portion of the boundary of the object are
imposed. This is done using the step retraction and inverse penalty function approach in which the
objective function is augmented by the constraint equations using a penalty parameter. The unknown
traction distribution and its location are defined in terms of load and geometric parameters, and
the sensitivities with respect to these parameters are obtained in the boundary element framework
using the implicit differentiation approach. A series of numerical examples involving the recon-
struction of linear, parabolic and trigonometric boundary tractions, respectively, are solved using the
present approach. The effect of Gaussian errors in the sensors is also studied. Good reconstruction of
the missing boundary tractions is obtained for the examples studied. The advantages of the present
boundary element formulation over the corresponding finite element formulations are also outlined.

1. INTRODUCTION

This paper deals with the solution of the inverse elastostatics problem (IESP) of recon-
struction of boundary tractions using response measurements from sensors located at
discrete, interior or exterior, locations of a solid. Computational techniques for the solution
of such problems may provide non-destructive evaluation tools, such as identifying contact
regions in neighboring objects, as well as hybrid experimental and numerical methods for
the analyses of solids (Weathers et al., 1985 ; Balas er al., 1983).

In problems of solid mechanics, given sufficient boundary traction and displacement
conditions, the displacement, strain and stress fields at any interior point of the body may
be obtained from the solution of the boundary value problem. Such problems, with a well-
posed set of boundary conditions, are termed direct problems. The existence and uniqueness
of the solution for such direct problems has been studied by Sokolnikoff (1956) and
Muskhelishvili (1963), among others.

Inverse problems have received attention from the engineering community only in the
past few decades. Much of the literature on the solution of inverse problems has been
devoted to the area of heat conduction. An extensive survey of such efforts may be found
in Beck et al. (1985) and Hensel (1991). Other applications of inverse problems in recent
years have been, for example, in the areas of geophysics, seismology, image processing
(Tikhonov and Goncharsky, 1987), and biomedical engineering (Pilkington, 1982 ; Rudy
and Oster, 1992), to only mention a few. The application of the boundary element method
to such a problem was reviewed by Tanaka (1987).

A limited literature exists on the solution of inverse problems in solid mechanics.
The IESPs fall under two main categories, namely the reconstruction problems and the
identification problems (Baumeister, 1987). In the former, an unknown boundary condition
that results in an observed response is determined while in the latter, an unknown portion
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of the geometry of the object is determined from a set of given responsc mcasurements.
The solution of an inverse problem does not necessarily satisfy conditions of existence,
uniqueness and stability. A survey of such issues concerning inverse problems may be found
in the textbooks by Tikhonov and Arsenin (1977) and Romanov (1987), among others.

The numerical solution of the inverse problems may be obtained using the finite element
method (FEM) or the boundary element method (BEM). The significant advantages offered
by the BEM for such problems were outlined in Bezerra and Saigal (1991, 1993) where a
BEM based formulation for inverse identification problems was also presented. A detailed
survey and description of the literature on the solution of inverse identification problems
may be found in Tanaka and Masuda (1986), Cruse (1987), and more recently in Tanaka
and Bui (1993). The inverse problem of boundary condition reconstruction in elastostatics,
despite its numerous physical applications, has received scant attention in the literature
so far. Such formulations, for example, may be employed in characterizing tractions at
inaccessible regions of critical components in sensitive mechanical equipment. Maniatty et
al. (1989), Zabaras et al. (1989) and Schnur and Zabaras (1990) have used the FEM and
the BEM along with the spatial “‘key-node” regularization procedure for the solution of
such problems. These contributions have been presented only recently and deal with the
determination of the magnitude of simple distributions of tractions at a given location on
the surface of the body. For realistic applications, it is necessary to develop further for-
mulations in order to treat more general traction distributions as well as to include the
treatment of unknown regions of the application of these tractions.

In this paper, the IESP of the boundary traction reconstruction is first explained and
briefly defined in terms of mathematical equations. The problem is then formulated as
a constrained non-linear least-squares optimization problem. A transformation of the
constrained optimization problem into an unconstrained one is next carried out. Using
function specifications for the unknown boundary tractions and the unconstrained opti-
mization methods, the solution procedure adopted seeks to minimize, in the least-squares
sense, the difference between the vector  consisting of simulated experimental data and
the prediction  corresponding to a guess of the traction distributions. The geometric
constraints that the boundary tractions lie within a certain given portion of the boundary
of the solid are imposed, when necessary, by recursively stepping back the search direction
length and through the use of penalty functions. The design sensitivities required in the
numerical optimization procedure are obtained by the implicit differentiation (Saigal et al.,
1989) of the boundary integral equations. A variable metric algorithm (Fox, 1971 ; Reklaitis
et al., 1983) is adopted for the numerical optimization procedure.

A number of examples involving rectangular panels and a rolling arrangement are
presented to demonstrate the effectiveness of the present solution procedures in recon-
structing boundary tractions. Good solutions were obtained for all cases attempted during
this study, including the introduction of small Gaussian errors in the simulated experimental
data. It is noted that the present study deals with the determination of: (a) the magnitude
and extent of the missing boundary traction data, and (b) the location of the distribution.
The latter has not been attempted previously in the literature to the best knowledge of the
authors.

2. BOUNDARY TRACTION RECONSTRUCTION

Consider a homogeneous, isotropic, linear elastic, two-dimensional solid Q, bounded
by its boundary I', as shown in Fig. 1(a). The direct field problems in elastostatics involve
the determination of displacement, strain and stress fields in Q, provided the following are
known (Kubo, 1988) : (a) the domain Q and the boundaries I of the solid ; (b) the governing
equations in the domain; (¢) the appropriate boundary conditions on I'; (d) the material
properties involved in the governing equations ; (¢) the forces or other inputs acting on the
solid. Under these conditions the solution may be calculated by a direct analysis using
analytical or numerical schemes. If any of the above information is lacking, incomplete, or
overdefined, a direct analysis cannot be carried out, and the problem is regarded as an
inverse problem.
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Fig. 1. (a) Direct problem ; (b) inverse problem.

The reconstruction of a missing boundary traction, for example @ in Fig. 1(b), any-
where along the boundary T" of the solid Q, constitutes an inverse problem since: (a) the
magnitude and the location of the boundary traction are not known; (b) the boundary
conditions may be overdefined in that the measured displacement data may be available at
a location (degree of freedom) where tractions are already specified; (c) the internal
measurement data within the solid Q may be available as additional information to over-
come the lack of sufficient boundary conditions. In mathematical notation, this can be
expressed as

0,(X) = —by(x); xeQ (1
0,(X) = 28,6,(X) +2pe(X) )
£5(%) = 5 [y, (%) + ;. (x)] 3)
o, (Y)n;(y) =7 yel “
uly) = a; ©)

Yilvi) = us vieeQ (6)

where o, is the stress tensor; i,/,/ = 1,2; b; are the body forces; ¢; is the strain tensor; 4
and p are the Lamé constants; J,; is the Kronecker delta; n; denotes the outer normal to
the boundary I'; 1, and u, are the tractions and displacements, respectively ; an overbar (7)
denotes prescribed quantities; a hat () denotes experimental measurements; y, are the
measured displacements, strains, or stresses along direction i at location k
(k=1,23,...,m); mis the total number of experimental measurements available. In this
study, the m observations Vi may lie inside Q or on the surface I' including at locations
where tractions are already prescribed, as shown in Fig. 1(b). Equations (1), (2) and (3)
denote, respectively, the equilibrium equations, the constitutive relations and the strain—
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displacement relations ; eqns (4) and (5) denote the traction and displacement boundary
conditions, respectively ; eqn (6) denotes the measured data.

3. NON-LINEAR LEAST-SQUARES FORMULATION

The vector z of design variables may be used to completely characterize the magnitude
and location of the unknown traction distribution through the mapping = Az, where
are the unknown tractions, and A is a system matrix. The solution of the inverse problem
of boundary traction reconstruction involves the determination of the design variables z
such that the quantities  match the experimentally measured quantities i in the least-
squares sense. This is accomplished by minimizing the difference between the mapping
¥ = Az and the data vector ¥ and is expressed as

Min[| Az—y |1)"“:q > 1 7

where z" = {z,, z,,....z,} are the n design variables. The value of ¢ depends upon the
type of metric employed in determining the vector norm. The Euclidean norm (g = 2)
corresponds to least-squares and is commonly employed in minimization problems. It is
noted that the least-square norm is not considered to be statistically robust (Scales and
Gersztenborn, 1988) unless the data vector  has errors with a Gaussian probability
distribution. The present work is not directed at the study of the error characteristics of
experimental measurements and the Euclidean norm is used without further justification.
The objective function to be minimized is then written for the two-dimensional case as

m 2

S@=w Y Y u—va) (®)

k=1i=1

where w is a weighting parameter that is included to enhance the numerical sensitivity in
the minimization process ; W, are the computed quantities such as displacements, stresses,
or strains along direction / and at the location k corresponding to an assumed boundary
traction distribution ; l]/,-k are the given experimental measurements.

4. FUNCTION SPECIFICATION FOR TRACTION DISTRIBUTION

In the inverse problem of boundary data reconstruction stated in eqns (1)—(6), it is
sought to determine the missing boundary tractions based on a set of given measurements
¥ at discrete locations within the object or at the boundary of the object. However, due to
the ill-posed nature of the problem, a variety of boundary tractions may exist that result in
nearly the same measurement data ¥ in eqn (6) and that result in a local minimization of
the objective function given in eqn (8). In addition, small variations in the given data may
produce different results unless restrictions on the smoothness of the solution are imposed
(Tikhonov and Goncharsky, 1987 ; Schnur and Zabaras, 1990).

To overcome such instabilities of the inverse problem, a priori information on the
desired solution is often introduced in the form of smoothness conditions that are
implemented through the use of approximating functions or by the regularization of the
objective function to be minimized (Tikhonov and Arsenin, 1977 ; Beck e al., 1985). In the
present study, the unknown tractions ®, = g, that are required to be reconstructed along
the outer normal 7, are assumed in the form

(I)j = (D(Z) = (D,'((U, ’7» U) (9)
where w, # and v are a magnitude, a span, and a position that completely define the missing

boundary traction using the smooth function ®,. The form of the smooth function ®,, such
as linear, parabolic, trigonometric, etc. is assumed to be known.



Inverse boundary traction reconstruction 1421

5. THE MINIMIZATION PROCEDURE

The numerical procedure adopted in this study for the solution of the IESP of boundary
traction reconstruction involves the determination of the model vector z such that the value
of the function f(z) in eqn (8) is a minimum. As stated earlier, the model vector z contains
the parameters that completely define the position and the amplitude of the function
describing the missing boundary tractions. The possible location of the missing traction is
generally limited to a bounded set of locations on the body, say I';. This condition of
limiting the location of the missing boundary traction to a feasible geometrical region is
expressed in the form of constraint equations as

Ci(z) 20, i=1lp; j=1LL (10)

where z; are the components of the vector z ; L is the number of geometry constraints ; p is the
number of design variables used to define the missing boundary tractions. The constraints in
eqn (10), together with the minimization of the function in eqn (8), lead to a constrained
minimization problem in the theory of optimization.

In the present study, the constrained minimization problem is transformed into an
unconstrained minimization problem using the internal penalty function approach (Fox,
1971). Further, the inverse penalty barrier function was employed to represent the geometry
constraints. This leads to an augmented objective function of the form

Fa, #) = )+ 0(C,(z). 0 (i)
L P 1
weerm=a3 3 [C_(ZJ (12

where 0 denotes the internal penalty function; C, are the constraints; £ is an arbitrary
penalty parameter; L is the number of constraints; p is the number of design variables in
z. It is noted that at the start of the constrained optimization process, a value is assigned
to the parameter %, such that the penalty term is of the same order of magnitude as the
difference-squared term. As the minimization proceeds, and the missing boundary tractions
are closer to the desired solution, the difference term contained in f(z) must play a more
prominent role. This is accomplished by reducing the value of the parameter #. The
numerical value assigned to # is problem dependent and an adaptive strategy may be
developed to change the value of # as the minimization progresses. Such an adaptive
capability was, however, not developed in the present study. Further discussions on the
selection of numerical value for penalty parameters in constrained optimization may be
found in, for example, Fox (1971) and Reklaitis ez al. (1983). The advantages of using the
internal penalty function approach as well as the inverse penalty barrier function for
inverse problems in elastostatics were discussed in detail in Bezerra and Saigal (1993). The
constraints C; are bounds on the values that z may assume, and may be expressed as

Cz) = £z, F (ate) (13)

where ¢ is a constant and represents the bounds of the domain and ¢ is a small number to
ensure that the reconstructed traction lies within an ¢ —neighborhood inside the prescribed
portion I, of the object boundary. For the minimization of the objective function, F (z, %),
given in eqn (11), the variable metric method, which belongs to the quasi-Newton class of
optimization methods, was adopted.

6. MINIMIZATION TECHNIQUE

To simplify notation, the function F(z,#) in eqn (11) is written as #(z) in the
subsequent discussions. The variable metric method is adopted in this paper which pos-
tulates that the function % (z) may be locally approximated, at any iteration s, by a Taylor’s
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expansion that includes terms up to the quadratic term. Many variations of the variable
metric method exist in the literature. The BFGS algorithm has been widely used in the
literature (Press et al., 1986 ; Reklaitis ef al., 1983) and has been adopted in this study. For
the inverse problem of boundary traction reconstruction, this algorithm starts with an
initial guess for the missing tractions defined by the vector z, and generates subsequent
updates to this vector according to the following relations:

20 = 2 g § (z) (14

S@EM) = S = AW g® as)

g = VF (z") 16)

R = A
At =t a8)

Ag” = g@@"+ ") —g (") (19)

where n is the iteration number; S is the search direction; «® is the step-length along a
line search direction; V is the gradient operator; the sequence AV, AV, AP .. A”*D
approaches the inverse of the Hessian of the objective function # (z), starting with A© = I.
The above procedure reduces the problem to a uni-dimensional optimization problem of
determining the scalar ™ in eqn (14), that minimizes the objective function along the
direction §™. Given the initial guess z'¥, the derivatives of & (z”) and the search direction
S are calculated. Three values of 2, say 2 < o® < &, corresponding to three points
79 < 2™ < 79 in eqn (14), along the downhill path of S, are found. These points are
such that # (z9) < #(2") < #(z). To ensure that the geometric components of the
vector 2™, say z, lie inside the feasible boundary domain '), the step-length « is retracted,
when necessary, according to the expression

1.00 x o if 20+ = T
= { (20)

0.90 x a; ifz+D ¢ Ty

The test in eqn (20) is applied to ™ repeatedly until 20" = T,.

Given the three initial feasible points, o> < a® < ¢, Brent’s method (Press et al.,
1986) is applied to find the minimum of % (z) along direction S by approximating
the function #(z) by a parabola fitted through the three points {«'“, o, a'”}. With
F (o) = F (7)), F (@) = F(z?), and F («') = F ('), solving the inverse interpolation
problem, the variable o denoting the minimum of the interpolating parabola is found as

10 =2y [F () = F ()] = (0 —a)? [F (1)~ F ()]
2 (a® —(x(")) [g(a(b)) —97(9(“'))] — (o® —O((")) [5"_(0(([’)) —97(0((“))] ’

am — g®

2D

The above relation fails only if the three points are collinear. Brent’s method takes care of
this situation by shifting the search for the minimum to the golden section method (Gill ez
al., 1981) whenever necessary. At the minimum %, &% (z,,) = Z (¢) is evaluated. The
values of # (z'), # (z) and # (z'") are compared with # (z,,) and the one with the most
difference is replaced by # (z,,). Thus a new triple set of points is obtained. A parabola is
fitted through this new set of points, and the process is iteratively applied until the minimum
of # (z), in the search direction being pursued, is found. Upon determining the appropriate
™ that minimizes # (z) in the search direction corresponding to iteration #, eqns (17), (14)
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and (15) are used to update A, S and z, respectively. If convergence has not been achieved,
the next iteration then starts with these updated values.

6.1. Objective function gradient

The minimization of eqn (11), accomplished by the variable metric algorithm described
in the previous section, requires the evaluation of the gradient of the function # (z) as seen
from eqn (16). The gradient of # (z), with respect to z, may be expressed as

ol
(7

G mo 2 .0 L 1 "3C/_
CowE Sy | 4o

(22)
C k=1i= i=1 Cf(z) oz

where  are the measured quantities and may represent displacements, strains or stresses,

respectively : and éy/0z are the sensitivities of displacements, strains or stresses, respectively,

with respect to the parameters z.

The sensitivities A,/ 0z are determined in this study using the boundary element method
(BEM). The compelling advantages of the BEM for sensitivity analysis have been dem-
onstrated in, among others, Saigal er al. (1989). The analytical formulation and numerical
implementation considerations for two-dimensional elastostatics sensitivity analysis con-
sidered here are available in Saigal er al. (1989) and are only briefly discussed below.

The BEM equations, starting from the Somigliana’s identity (Banerjee and Butterfieid,
1981; Brebbia er al., 1984) for elastostatics and after discretization using interpolation
functions, are written in the matrix form as

(Fl{u} = [Gl{t} +{a} (23)

where [F] and [G] are the system matrices; {u} and {t} are the vectors of displacements
and tractions, respectively; {q} is the vector of other influences such as body forces, etc.
The implicit differentiation of eqn (23) with respect to the design variable z, leads to

(F] tu},, = [G] {t} , +[G],{t} —[F],{u} +{q}., (24)

where the subscript (,z) denotes differentiation with respect to z. The derivations of the
matrices [F] and [G] and their respective sensitivities, as well as techniques for their
numerical evaluations, may be found in, for example, Saigal et al. (1989). 1t is noted that
the model vector z contains parameters that define the location, the distribution, and the
magnitude of the missing tractions. The sensitivities [F], and [G], exist only for the
components of z which are related to the location of the missing tractions. These matrix
sensitivities vanish for those component of z that are related to the magnitude of the applied
loading. In the latter case the sensitivities of {t} , in eqn (24) are, however, non-zero.

The sensitivities are obtained by first solving eqn (23) for the unknown displacements
and tractions, substituting these quantities in eqn (24), and finally solving eqn (24) for the
unknown displacement and traction sensitivities. For the cases where strains and stresses
are the measured quantities, the sensitivities of strains and stresses may be obtained from
the displacement and traction sensitivities obtained from eqn (24), following the procedure
given by Kane and Saigal (1988).

7. EXAMPLES

A number of example problems were considered to evaluate the effectiveness and the
limitations of the formulations presented in this paper. In all the examples presented here,
the experimental measurements i, required in the formulation were obtained from a prior
direct BEM analysis with the actual boundary tractions imposed on the structure. These
boundary tractions then also served as the “exact™ solutions for the purposes of comparison
of the accuracy of the present procedures. The “measurement’ locations may lie within, or
at the boundary of, the object. The measured quantitiecs may be displacements, stresses or
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Fig. 2. Linear boundary tractions reconstruction for a rectangular panel.

strains. The algorithm for the minimization of the functional # in eqn (11) proceeds in an
iterative fashion and is considered to have converged when two successive evaluations, %,
and %,, of the functional are such that 2 | %, —%,| < ex (|F || +|F,|+E), where ¢ is a
prescribed tolerance and £ is a small number to account for the special case of converging
to exactly zero function value. A value of ¢ = 107 and € = 107" was used in the present
study. The weighting parameter w was selected such that wM > ¢, where M is a typical
magnitude of the experimental data. In the present study, M ranges in magnitude from
1072 to 10°, and the parameter w was accordingly chosen such that wx M ~ 10°. The
penalty parameter # was varied within an analysis as the iteration proceeded, starting
with a large value 10°, subsequently reducing it to 10* and finally to zero. Three-noded
quadratic boundary elements were employed for the discretization of the boundary of the
object.

7.1. A recrangular panel under linear tractions

A rectangular panel shown in Fig. 2 was considered. The geometric dimensions for
the panel are shown and the material properties were assumed as modulus of elasticity,
E =18.6 x 10° psi, and Poisson’s ratio, v = 0.3. The panel is fixed at its left edge and its
right edge is subjected to: (a) a normal traction of a linear distribution with a magnitude
of zero at A and a magnitude of 1000 psi at B, and (b) a shear traction of a linear distribution
with a magnitude of zero at A and a magnitude of 100 psi at B. These two tractions were
considered to be missing and are desired to be reconstructed. The measured data consisted
of the displacements along the orthogonal x and y directions at 32 points located on the
boundary of the panel and depicted by cross symbols in Fig. 2. For purposes of recon-
struction, the missing tractions are expressed as

o(s) =as+b, 1(s)=cs+d (295

where ¢ and 7 represent the normal and tangential tractions, respectively ; s is the distance
along the edge AB; a,b,c and 4 are unknown constants that define the linear traction
distributions and constitute the model vector z for this case. Thus, a simple case is studied
in this example for which the location and the distribution of the missing tractions are
known and only their magnitudes need to be reconstructed.
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Table 1. Summary of numerical results—no error in measurement data

This study
Case Initial Final Actual
number Material Properties values NIT NRE values values
1 E = 1.86x 10° psi a=0.0 975.80 1000
b=0.10 11 0 28.34 0
c=0.0 90.46 100
v =030 d=0.10 4.40 0
n E = 1.86x 10° psi P =300 1001.0 1000
W =175 25 3 19.99 20
v=203 Z =50 71.11 70
111 E = 1217 N/mm’ N =150 12 3 34.97 35
v =033 =10 8.02 8
v E = 1217 N/mm? N=2355 35.13 35
T=5 26 3 10.08 10
v=10.33 y=10 7.94 8

NIT = number of iterations, NRE = number of restarts.

Case I: rectangular panel with missing linear tractions.

Case I1: rectangular panel with missing normal parabolic tractions.

Case III: roller configuration with missing normal contact tractions.

Case IV : roller configuration with missing normal and tangential contact tractions.

The panel was discretized using 30 quadratic boundary elements and 60 nodal points.
The initial guess for ¢ and t was taken to be a constant traction of 0.1 psi. Thusa = ¢ = 0,
and b = d = 0.1 psi were assumed as the initial guess. Since the location of the traction
distribution was fixed, the penalty parameter Z was set to zero for this case. Figure 2 shows
the evolution of the missing traction distribution starting from the initial guess. The results
for this analysis were also summarized in Table | under case I. A good agreement with the
exact solution was obtained for both the normal and the tangential traction distributions.

7.2. A rectangular panel under parabolic tractions

A simply supported panel, shown in Fig. 3, was considered next. The panel has the
same geometry and material properties as those considered in the previous example. The
panel is subjected to a normal stress with a parabolic distribution at its top edge. The
location Z of the parabolic distribution, the span W of the parabola, and the peak magnitude
P of the parabola are unknown and are desired to be reconstructed. The normal distribution
may be expressed as

we,

ARNNNANNENNESERENN VAN NURS

“\INTERNAL
SENSORS
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100in

-
o
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Fig. 3. Parabolic traction distribution reconstruction for a rectangular panel; magnitude (P),
span( W) and location (Z).
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4P , 8PZ 4PZ?
a(s) = ——W—ZS +—W2 s+P— w2

(26)

where s is the distance along the span of the parabola, and (Z—0.5W) <5 < (Z+0.5W).
The measured data consists of stresses along the orthogonal x and y directions at 39
locations within the body. These locations are shown by cross symbols in Fig. 3. The
parameters P, W and Z constitute the model vector z for the present case. The initial guess
for these parameters was selected as P = 300 psi, W = 75 in and Z = 50 in. The evolution
of the missing traction distribution, starting from this initial distribution, as the iterations
in the present analysis proceed, is shown in Fig. 3. The exact traction distribution for this
case is also shown in bold line in Fig. 3 for comparison and a good agreement is observed.
The initial data, the exact data, and other data related to this analysis are given in Table 1
under case II.

As the missing tractions varied in position and span length after each iteration, the
BEM mesh for the upper boundary edge was modified to accommodate such evolutions.
The penalty parameter Z in eqn (11) was varied during the analysis, changing from a value
of 10° at the beginning to zero at the end. The convergence history of the traction parameters,
as well as of the objective function in eqn (11), are shown in Fig. 4. The final solution was
obtained in 25 iterations. The discontinuities in the convergence plots in Fig. 4 correspond
to changes of search directions in the optimization process or to changes in the value of the
penalty parameter # during restarts.

The present example deals with the determination of the missing location of the traction
distribution in addition to its span and magnitude. Previous analyses reported in the
literature have only considered the determination of the magnitude of missing boundary
data besides being based on the finite element method (Maniatty ez a/. 1989 ; Schnur and
Zabaras, 1990). The present analysis thus represents an extension over the presently avail-
able capabilities for the reconstruction of boundary data.

7.3. A roller configuration under normal stresses

The normal tractions acting on a roller at its interface with the workpiece are analysed.
The geometry of the roller is given in Fig. 5(a). The inner and the outer diameter of the
roller are 10 mm and 89 mm, respectively. The material data for the roller was assumed as



Inverse boundary traction reconstruction 1427
60.0 —
50.0+
40.0 +
300+
20.0
10.0
0.0
-10.0
-20.0
-30.0 4
-40.0
-50.0 +

Y-CORD. (IN)

1 T 1T T

/ ¥

—

[N I [ N O Y B

60.0
-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
X-CORD. {IN)

(a)
-42.0 INTERNAL SENSORS
]:. ) ~

Y (N}

1 -8 6 -4 -2 0 2 4 & 8 10
(b) X (IN)

Fig. 5. (a) Roller geometry and discretization ; (b) measurement locations.

modulus of elasticity, £ = 1217 N/mm?® and Poisson’s ratio, v = 0.33. The roller was
discretized using 32 boundary elements with 24 elements on the outer boundary and eight
elements on the inner boundary. The boundary region coming in contact with the workpiece
and for which the normal tractions are to be reconstructed was discretized using a finer
mesh. The measurements were obtained at 25 internal locations identified by solid crosses
in Fig. 5(b). The contact region is characterized by angle y as shown in Fig. 5(a). The
normal tractions on this region are assumed to have a sinusoidal distribution and are given
as

N (k) = Asin [xy] (27)

where N is the normal traction, A4 is the amplitude of the sinusoidal distribution, and
0 <x < 1. Thus 4 and 7y are the undetermined traction parameters that constitute the
model vector z. It is noted that this roller configuration has previously been experimentally
studied by Theocaris et al. (1983). They observed that the normal traction distribution was
slightly nonsymmetrical even with a symmetric roller. For simplicity the normal traction
distribution is assumed to be symmetric in the present study. The inverse problem defined
above has been analysed previously by Schnur and Zabaras (1990) using a finite element
formulation and a spatial regularization scheme.

The present example was studied for two sets of measured data at the same internal
locations. The first data consisted of displacement measurements while the second data
consisted of strain measurements. A contour plot of the function to be minimized in each
case was shown in Fig. 6. It is clearly observed from these plots that while a distinct
minimum exists for the function corresponding to the strain measurements, a minimum
corresponding to the displacement measurements does not exist. Thus, the present for-
mulation can be gainfully used in non-destructive evaluations of components to aid in
identifying the measurements that must be made to allow an effective reconstruction of the
missing data.

The present analysis was started with an initial guess of 4 = 50 N/mm?® and y = 10"
The evolution of this initial guess towards the final exact distribution in the iterative analysis
used in this study is shown in Fig. 7. The key data for this example are also summarized in
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Fig. 6. (a) 50 function contours, 25 displacement sensors ; (b) 50 function contours, 25 strain sensors.

Table 1 under case III. The results further demonstrate the capability of the present
developments to accurately reconstruct the missing boundary tractions.

7.4. A roller configuration under sinusoidal normal and tangential stresses

An extension of the example configuration of the previous section is studied next. In
addition to the normal traction distribution, it is desired to reconstruct the tangential
traction distribution also. In the experimental observations reported in Theocaris et al.
(1983), the normal and the tangential tractions were found to be nearly symmetric and
antisymmetric, respectively. Based on this observations, the traction distributions may be
expressed as

N(k) = Asin[ky], T (x)= Bsin[(k—0.5)y] (28)

where N and T represent the normal and tangential tractions, respectively, and 4 and B
are the amplitudes of the corresponding sinusoidal distributions assumed for each. The
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Fig. 7. Evolution of the normal contact stress: two variables.
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parameters 4, B and y then define the missing traction distributions and thus constitute the
model vector z for this case. Starting with an initial guess of 4 = 55 N/mm?, B = 5 N/mm*
and y = 10°, the evolution of the normal and the tangential traction distributions were
shown in Figs 8 and 9, respectively. The various data for this case are summarized in Table
1 under case I'V. It is seen that the present three-parameter problem requires approximately
twice the number of iterations required in the previous two-parameter problem for the
same geometry configuration. A good agreement of the predictions for missing boundary
tractions with the exact solution is also observed. An interesting application of the present
example may be the study of the variation of the coefficient of friction along the contact
length as the contact pressure varies along the length.

7.5. Effect of error in the measured data

A proposed numerical procedure for the solution of inverse problems must be robust
in that it should allow prediction of the missing data in the presence of small errors in
experimental observations. The analysis of case II for the determination of parabolic normal
traction distribution from experimental data observed at 39 stress sensors located within
the body was repeated for varying levels of errors introduced into the experimental data.
Normally distributed random numbers were added to the experimental data to simulate
experimental errors. The errors were considered to be uncorrelated, and were assumed to
have a mean, i = 0, and a constant variance. The errors for stress in direction i are picked
randomly, with a 99% probability, from the interval (— 74, +#7d,), where &, is the average
of all stresses along 7 in the stress data set. A higher value of # corresponds to larger
measurement errors. The results were obtained for increasing values of # and are shown in

by
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Fig. 9. Evolution of the tangential contact stress : three variables.
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Table 2. Effect of small random errors in measurement data

Data error Standard Traction Span Position
parameter deviation N (psi) W (in.) Z(in.)
f=0% ¢ =0.00 1000.1 19.99 70.00
i =5% 6, =1.38 1001.1 19.97 71.11
8,=3.15
i =10% 6, =276 1001.8 19.94 71.11
8, =6.31
fi=15% 6, =4.15 1002.7 19.92 71.11
6,="9.46
i =20% &, =5.52 1003.6 19.89 71.11
6, =12.62
Exact solution 1000.0 20.00 70.00

8, = 71.16 and d, = 162.48.

Table 2. It is noted from these results that for the example studied, the proposed procedures
are quite stable with respect to small errors in the experimental data.

8. CONCLUSIONS

An optimization based integral formulation has been presented for the solution of
inverse problems in elastostatics that involve the reconstruction of missing or inaccessible
boundary data. The objective function used for the minimization in the optimization
procedure was taken to be the square of the difference between a set of experimental
measurements and their corresponding computed quantities. The computations are based
on an initial guess in the first step and on the refinements of this guess produced by the
numerical optimization algorithm in the subsequent steps. A distribution (such as parabolic,
sinusoidal, etc.) is assumed for the unknown data and its location, extent of spread, and
amplitude are determined by the inverse formulation developed here. The objective function
may be augmented by geometric constraints restricting the unknown data to within a
prescribed portion of the boundary. The inverse penalty function approach is adopted to
transform the constrained problem into an unconstrained one and the minimization is
performed using a variable metric method. The response sensitivities required in this
algorithm are computed by an analytical approach by performing the implicit differentiation
of the boundary integral equations. Such analytical sensitivities aid in a faster convergence
of the iterative procedure. A variety of example problems for reconstructing boundary
tractions with linear, parabolic, and trigonometric distributions, respectively, are presented.
The actnal boundary tractions are closely predicted in each case demonstrating the validity
of the present approach. Numerical data is also presented to demonstrate the ability of the
present approach to reconstruct boundary data from experimental measurements con-
taminated with the usual order of experimental errors. A prime limitation of the present
developments arises from the fact that the optimization procedure upon which they are
based may converge to a local minimum especially for cases for which the initial guess is
far away from the actual boundary data. A number of applications including determining
the variation of coefficient of friction along a contact region and non-destructive evaluation
of components may be efficiently treated using the present developments.
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